∫ u dv = uv -∫v du (Integration by parts)
∫ a dx = ax + c where a is constant∫ xn dx = xn+1 / n+1 + c
∫ ex dx = ex + c
∫ 1/x dx = log x + c
∫ 1/ x2 dx = - 1/x + c
∫ Sin x dx = - Cos x + c
∫ Cos x dx = Sin x + c
∫ Sin ax dx = - Cos ax /a + c
∫ Cos ax dx = Sin ax /a + c
∫ Tan x Sec x dx = Sec x + c
∫ Sec2 x dx = Tan x + c
∫ Cosec2 x dx = - Cot x + c
∫ Cot x Cosec x dx = - Cosec x + c
∫ √x dx = x3/2 / 3/2 + c
∫ 1/√x dx = 2√x + c
∫ Tan x dx = log Sec x + c
∫ Sec x dx = log (Sec x + Tan x) + c
∫ Cosec x dx = - log (Cosec x + Cot x) + c
∫ x dy + y dx = xy + c
∫ Cot x dx = = log Sin x + c
∫ dx/√ (a2 - x2) = Sin-1 x/a + c
∫ dx/√ (a2 + x2) = log(x + √ (a2 + x2)) + c
∫ dx/√(x2 - a2) = Cos-1 x/a + c or log(x + √(x2 - a2)) + c
∫ dx/( a2 + x2) = 1/a Tan-1 x/a + c
∫ dx/( a2 - x2) = 1/2a log((a+x)/(a-x)) + c
∫ dx/(x2 - a2) = 1/2a log((x-a)/(x+a)) + c
∫ √ (a2 - x2) dx = x/a √ (a2 - x2) + a2/2 Sin-1 x/a + c
∫ √ (a2 + x2) dx = x/2 √ (a2 + x2) + a2/2 log(x + √ (a2 + x2)) + c
∫ √(x2 - a2) dx = x/2 √(x2 - a2) - a2/2 log(x + √(x2 - a2)) + c