Chennai Tuition Centre
+91 99414 55373 | chennaituition@gmail.com

Learn From Home

Education Courses


The General Fourier series for the function f(x) in the interval c < x < c + 2 is given by

F(x) = a0/2 + ∑n=1 an cosnx + ∑n=1 bn sinnx   where

a= 1/   cc + 2∏   f(x) dx

a= 1/   cc + 2∏   f(x) cosnx dx

b= 1/   cc + 2∏   f(x) sinnx dx

 

Note: cosn∏  = (-1)n where n is an integer

           sinn∏  =  0    where n is an integer

 

The Fourier series for the function f(x) in the interval 0 < x < 2 is given by

a= 1/   02∏   f(x) dx

a= 1/   02∏   f(x) cosnx dx

b= 1/   02∏   f(x) sinnx dx

 

The Fourier series for the function f(x) in the interval - < x <   is given by

a= 1/   -∏   f(x) dx

a= 1/   -∏  f(x) cosnx dx

b= 1/   -∏  f(x) sinnx dx

 

Even and odd function:

A function is said to be even if f(-x) = f(x).

A function is said to be odd if f(-x) = - f(x).

 

-∏   f(x) dx = 0, if f(x) is an odd function.

-∏   f(x) dx =20∏   f(x) dx, if f(x) is an even function.

 

Similarly

-ll   f(x) dx = 0, if f(x) is an odd function.

-ll   f(x) dx =20l   f(x) dx, if f(x) is an even function.

 

If a function f(x) is even, its Fourier expansion contain only cosine terms.

F(x) = a0/2 + ∑n=1 an cosnx

a= 2/   0∏   f(x) dx

a= 2/   0∏   f(x) cosnx dx

b = 0

 If a function f(x) is odd, its Fourier expansion contain only sine terms.

F(x) =  ∑n=1 bn sinnx

b= 2/   0∏   f(x) sinnx dx

a0  = a= 0

 

Change of interval:

The  Fourier series for the function f(x) in the interval c < x < c + 2l is given by

F(x) = a0/2 + ∑n=1 an cosnx/l + ∑n=1 bn sinnx/l   where

a= 1/l   cc + 2l   f(x) dx

a= 1/l   cc + 2l   f(x) cosnx/l dx

b= 1/l   cc + 2l   f(x) cosnx/l dx

 

Half range Expansions:

f(x)  defined over the interval 0 < x < l is capable of two distinct half range series.

The half range cosine series in (0,l) is

F(x) = a0/2 + ∑n=1 an cosnx/l where

a= 2/l   0l   f(x) dx

a= 2/l   0l   f(x) cosnx/l dx

 

The half range sine series in (0,l) is

F(x) = ∑n=1 bn sinnx/l   where

b= 2/l   0l   f(x) cosnx/l dx

 

Note:

The half range cosine series in (0,) is

F(x) = a0/2 + ∑n=1 an cosnx

a= 2/   0∏   f(x) dx

a= 2/   0∏   f(x) cosnx dx

 

The half range sine series in (0,) is

F(x) = ∑n=1 bn sinnx

b= 2/   0∏   f(x) sinnx dx

 

Complex or Exponential form of Fourier series:

The complex form of  Fourier series for the function f(x) in the interval c < x < c + 2l is given by

F(x) = ∑n= -∞   cn einx/l    where

cn    =    1/2l  cc + 2l  f(x)   e-inx/l    

 

The complex form of  Fourier series for the function f(x) in the interval - < x <    is given by

F(x) = ∑n= -∞   cn einx    where

cn    =    1/2  -f(x)   e-inx    

 

Root Mean Square value (RMS Value):

R.M.S value of f(x) over the interval (a,b) is defined as

R.M.S = √ab [f(x)]2   dx / b-a

 

Chennai Tuition

Accusam nonumy clita sed rebum kasd eirmod elitr. Ipsum ea lorem at et diam est, tempor rebum ipsum sit ea tempor stet et consetetur dolores. Justo stet diam ipsum lorem vero clita diam

Newsletter

Get In Touch

24/51 Lathuram Street, Chennai-600002

+91 99414 55373

chennaituition@gmail.com

Copyright © Chennai Tuition. All Rights Reserved.

Designed by HTML Codex