Chennai Tuition Centre
+91 99414 55373 | chennaituition@gmail.com

Learn From Home

Education Courses


Single Server Poisson Model – 1
(M/M/1) (∞ / FIFO)

P0 = 1 – (λ/μ)   where P0  denotes the probability of system being idle.

Pn = (λ/μ)n P0  = (λ/μ)n {1 – (λ/ μ)}

The quantity λ/μ = ρ is called the traffic intensity.

Average number Ls of customers in the system

Ls    =  E(n) =  n=0  nPn  = λ/(μ- λ)

Average number Lq of customers in the queue

Lq  = E(n) =  n=0  (n-1)Pn  = λ2/{μ (μ- λ)} or  Ls – (λ/μ)

 Average number Lw of customers in the nonempty queue

 Lw  = E{(N-1)/(N-1)>0}  = μ / (μ- λ)

 Probability that the number of customers in the system exceeds k

P(n > k) =  n=k+1  Pn    = ρk+1

 Probability density function of the waiting time in the system:

 f(w) = n=0  f(w/n) Pn =   (μ- λ) e-(μ -λ)w

 Average waiting time Ws of a customer in the system

 Ws  = 1 / (μ- λ)

 Average waiting time Wq of a customer in the queue

 Wq  =  / λ/{μ (μ- λ)}

 Probability that the waiting of a customer in the system exceeds t.

 P(Ws > t) = t   f(w) dw  = e-(μ -λ)t

 Little’s Formula:

Ls   =   λ/(μ- λ)                =  λ Ws

Ls   =  λ/(μ- λ)                = Lq  + λ/μ

Ws =   1 / (μ- λ)             =  Wq + 1/μ

Lq   =   λ2/{μ (μ- λ)}  =  λ Wq

  

Model – 2  (M/M/C) (∞ / FCFS):

 P0 = 1/ [nc-1=0 (1/n!) (λ/μ)n] + [(λ/μ)c (1/c!{1- λ/cμ})]  

 Pn =  (1/c!cn-c) (λ/μ)n P0         If n ≥ c

 Average number Ls of customers in the system :

 Ls    =   [(1/c!c) (λ/μ)c+1 P0 {1/ (1- λ/μc)2}] + λ/μ

 Average number Lq of customers in the queue:

 Lq  =  (1/c!c) (λ/μ)c+1 P0 {1/ (1- λ/μc)2}

 Average Time a customer spends in the system:

 Ws = (1/λ) Ls  =   [(1/μc!c) (λ/μ)c P0 {1/ (1- λ/μc)2}] + 1/μ

 Average Time a customer spends in the Queue:

 Wq = (1/λ) Lq  =   (1/μc!c) (λ/μ)c P0 {1/ (1- λ/μc)2}

 Probability that an arrival has to wait:

P(Ws > 0) =  P(n ≥ c)

                 =  (λ/μ)c P0  / c!(1- λ/μc)

 Probability that an arrival has to get the service without waiting:

 P(getting the service without waiting)  = 1 - P(Arrival has to wait)

              = 1 – {(λ/μ)c P0  / c!(1- λ/μc)}

 Probability that someone will be waiting:

 P(Someone will be waiting )  = P(n ≥ c+1)

                                                = n=c+1  Pn

= (λ/μ)c (λ/μc) P0  / {c!(1- λ/μc)}

 Mean waiting time in the queue for those who actually wait:

 E(Wq /Ws)  =  E(Wq )/P(Ws > 0)

                   = 1/(μc - λ)

 Average number of customers (in non-empty queues), who have to actually wait:

 Lw  = (λ/μc) /(1- λ/μc)

  

 Model – 3

(M/M/1) (N / FIFO)  (Finite capacity, single server Poisson queue model):

 Pn  =  (λ/μ)n  {(1- λ/μ) /(1- (λ/μ)N+1)}

  Pn  =  1/(N+1)  for   λ  =  μ

 Probability that the system is idle:

 P0 = (1 – r) / (1 – (ρ)N+1)  where ρ  = λ/μ

 Average number Ls of customers in the system

Ls    =  E(n) = P0 * nN=0  n ρn

         = [λ/(μ- λ)] – [(N+1) (λ/μ)N+1/(1- (λ/μ)N+1)]  for λ    μ

      = k/2   for   λ  =  μ

 Average queue length:

Lq   =  Ls – λ′/μ . λ′ =  μ(1- P0) the effective arrival rate.

Average waiting time in the system:

Ws  =  Ls / λ′

Average waiting time in the queue:

Wq  =  Lq / λ′

 Average number of units in the system:

  Ls     = [λ/(m- 1)] – [(N+1) (1/m)N+1/(1- (1/m)N+1)] 

Average number of units in the queue:

 Lq   =  Ls – (1 - P0)

  

Model – 4

(M/M/S) (K / FIFO)  or  (M/M/C) (N / FIFO)  :

 P0 = [ns-1=0 (1/n!) (λ/μ)n  +(1/s!) (λ/μ)s   nk=s  (λ/μ)n-s   ]-1

 Pn = (1/n!) (1/m)n  P0                  For  n ≤ s

 Pn = (1/s! sn-s) (1/m)n  P0      For s < n ≤ k

 ρ =  1/ μs

 Lq   =  P0 (1/m)s (r/s!(1 - r )2) [ 1 - ρk – s – (k – s ) (1 – ρ) ρk – s]

 Ls   =   Lq + s [ns-1=0  ( s - n ) Pn]

 Ws  =  Ls / λ′

 λ′  =     μ  [ s - ns-1=0  ( s - n ) Pn]

 Excess capacity or overflow occurs

 P(N= n) =  (1/s! sn-2) (λ/μ)n  P0      

 Non – Markovian Queueing Model 5

(M/G/1): (∞ / GD model)

 Pollaczek-Khinchine formula:

 Ls  =  E(N) = λ E(T) [λ2 {Var(T) + (E(T)2} / 2{1 – λ E(T)}]

 

 

Chennai Tuition

Accusam nonumy clita sed rebum kasd eirmod elitr. Ipsum ea lorem at et diam est, tempor rebum ipsum sit ea tempor stet et consetetur dolores. Justo stet diam ipsum lorem vero clita diam

Newsletter

Get In Touch

24/51 Lathuram Street, Chennai-600002

+91 99414 55373

chennaituition@gmail.com

Copyright © Chennai Tuition. All Rights Reserved.

Designed by HTML Codex