Chennai Tuition Centre
+91 99414 55373 | chennaituition@gmail.com

Learn From Home

Education Courses


u dv = uv -∫v du (Integration by parts)

a dx = ax + c where a is constant

xn dx = xn+1 / n+1 + c

ex dx = ex + c

1/x dx = log x + c

1/ x2 dx = - 1/x + c

Sin x dx = - Cos x + c

Cos x dx = Sin x + c

Sin ax dx = - Cos ax /a + c

Cos ax dx = Sin ax /a + c

Tan x Sec x dx = Sec x + c

Sec2 x dx = Tan x + c

Cosec2 x dx = - Cot x + c

Cot x Cosec x dx = - Cosec x + c

∫ √x dx = x3/2 / 3/2 + c

1/x dx = 2x + c

Tan x dx = log Sec x + c

Sec x dx = log (Sec x + Tan x) + c

Cosec x dx = - log (Cosec x + Cot x) + c

x dy + y dx = xy + c

Cot x dx = = log Sin x + c

∫ dx/√ (a2 - x2) = Sin-1 x/a + c

∫ dx/√ (a2 + x2) = log(x + √ (a2 + x2)) + c

∫ dx/√(x2 - a2) = Cos-1 x/a + c or log(x + √(x2 - a2)) + c

∫ dx/( a2 + x2) = 1/a Tan-1 x/a + c

∫ dx/( a2 - x2) = 1/2a log((a+x)/(a-x)) + c

∫ dx/(x2 - a2) = 1/2a log((x-a)/(x+a)) + c

∫ √ (a2 - x2) dx = x/a √ (a2 - x2) + a2/2 Sin-1 x/a + c

∫ √ (a2 + x2) dx = x/2 √ (a2 + x2) + a2/2 log(x + √ (a2 + x2)) + c

∫ √(x2 - a2) dx = x/2 √(x2 - a2) - a2/2 log(x + √(x2 - a2)) + c

 

Chennai Tuition

Accusam nonumy clita sed rebum kasd eirmod elitr. Ipsum ea lorem at et diam est, tempor rebum ipsum sit ea tempor stet et consetetur dolores. Justo stet diam ipsum lorem vero clita diam

Newsletter

Get In Touch

24/51 Lathuram Street, Chennai-600002

+91 99414 55373

chennaituition@gmail.com

Copyright © Chennai Tuition. All Rights Reserved.

Designed by HTML Codex