Chennai Tuition Centre
+91 99414 55373 | chennaituition@gmail.com

Learn From Home

Education Courses


Fourier Integral Theorem:

If f(x) is a given function defined in (-l, l) and satisfies dirichlet’s conditions then

F(x) = 1/π   0-∞f(t) cosλ (t-x) dt dλ

This is known as Fourier integral Theorem or Fourier integral formula.

 

Point of discontinuity

{F(x+0) – F(x-0)}/2 = 0-∞f(t) cosλ (t-x) dt dλ

Fourier Sine integral:

 

F(x) = 2/π   0 sin λx 0f(t) sin λt dt dλ

 

 Fourier cosine integral:

 

F(x) = 2/π   0cos λx 0f(t) cos λt dt dλ

 

Complex form of Fourier integral:

 

F(x) = 1/2π   -∞e-iλx -∞f(t) eiλt dt dλ

 

Fourier Transforms

Complex Fourier Transforms and its inversion formula

 

F[ f(x) ] = 1/√2π -∞f(t) eist dt is called the complex Fourier transform of f(x).

 

f(x) =  1/√2π -∞F[ f(t) ] e-isx ds is called the inversion formula for the complex Fourier transform of F[ f(t) ]

 

Fourier Sine Transform:


Fs[ f(x) ] = √(2/π) 0f(t) sin st dt   is called the Fourier sine transform of the function f(x).

 

f(x)=  √(2/π) 0 Fs[ f(x) ]  sin sx ds    is called the inversion formula for the Fourier Sine Transform.

 

Fourier Cosine Transform:

 

Fc[ f(x) ] = √(2/π) 0f(t) cos st dt   is called the Fourier cosine transform of the function f(x).

 

f(x)=  √(2/π) 0 Fc[ f(x) ]  cos sx ds    is called the inversion formula for the Fourier Cosine Transform.

 

 

Convolution of two functions:

 

If f(x) and g(x) are any two functions defined in (-∞, ∞) then the convolution of these two functions is defined by

 

1/√2π -∞f(t) g(x-t) dt and is denoted by

 

 f * g = 1/√2π -∞f(t) g(x-t) dt

 

Convolution Theorem for Fourier Transforms:

 

F[(f * g) x ] = F(s) . G(s)

1/√2π -∞(f * g) x eisx  dx = {1/√2π -∞f(x) eisx  dx} {1/√2π -∞g(x) eisx  dx }

 

Parseval’s Identity:

 

If f(x) is a given function defined in (-∞, ∞) then it satisfy the identity

 

-∞[ f(x) ]2 dx =  -∞[ f(s) ]2  ds  where F(s) is the fourier transform of f(x).

 

 

Chennai Tuition

Accusam nonumy clita sed rebum kasd eirmod elitr. Ipsum ea lorem at et diam est, tempor rebum ipsum sit ea tempor stet et consetetur dolores. Justo stet diam ipsum lorem vero clita diam

Newsletter

Get In Touch

24/51 Lathuram Street, Chennai-600002

+91 99414 55373

chennaituition@gmail.com

Copyright © Chennai Tuition. All Rights Reserved.

Designed by HTML Codex