Chennai Tuition Centre
+91 99414 55373 | chennaituition@gmail.com

Learn From Home

Education Courses

Trignometric Formulae

Relation Between Degree and Radians:

Angles in Degress 0 30 45
60
90
Angles in radians 0        π / 6
π / 4 π / 3 π / 2


 1c = (180 / π)o

 

1o =  (π / 180)c

 

Trigonometric Ratios of an acute angle of a right triangle:

 

Sin θ = Length of opposite side / Length of hypotenuse side

Cos θ = Length of adjacent side / Length of hypotenuse side

Tan θ = Length of opposite side / Length of adjacent side

Sec θ = Length of hypotenuse side / Length of adjacent side

Cosec θ = Length of hypotenuse side / Length of opposite side

Cot θ = Length of adjacent side  / Length of opposite side 

 

Reciprocal Relations:

 

Sin θ = 1 / Cosec θ                       Sec θ = 1 / Cos θ

 

Cos θ = 1 / Sec θ                          Cosec θ = 1 / Sin θ

 

Tan θ = 1 / Cot θ                           Cot θ = 1 / Tan θ

  

Quotient Relations:

 

Tan θ = Sin θ / Cos θ        

 

Cot θ = Cos θ / Sin θ

 

 

Trigonometric ratios of Complementary angles:

 

Sin (90 – θ) = Cos θ                          Sec (90 – θ) = Cosec θ

 

Cos (90 – θ) = Sin θ                          Cosec (90 – θ) = Sec θ

 

Tan (90 – θ) = Cot θ                           Cot (90 – θ) = Tan θ

 

Trigonometric ratios for angle of measure:

 

  θ   0
  30
 45
  60
  90
Sin θ 0 1/2 1/√2 √3/2 1
Cos θ 1 √3/2 1/√2 1/2 0
Tan θ 0 1/√3 1 √3
Cot θ √3 1 1/√3 0
Sec θ 1
2/√3 √2 2
Cosec θ 2 √2 2/√3 1
 

Basic Identities
  • Sin 2 x + Cos 2 x = 1
  • Sec 2 x - Tan2 x = 1
  • Cosec 2 x - Cot 2 x = 1
  • Sin 2 x = 1 - Cos 2 x
  • Cos 2 x = 1 - Sin 2 x
  • Sec 2 x = 1 + Tan2x
  • Cosec 2 x = 1 + Cot2 x
  • Sec 2 x -1 = Tan2 x
  • Cosec 2 x –1 = Cot2 x

Addition and Difference

  • Sin(A+B) = SinA CosB + CosA SinB
  • Sin(A-B) = SinA CosB - CosA SinB
  • Cos(A+B) = CosA CosB - SinA SinB
  • Cos(A-B) = CosA CosB + SinA SinB
  • Tan(A+B) = (TanA + TanB) / (1- TanA TanB)
  • Tan(A-B) = (TanA - TanB) / (1+ TanA TanB)
  • Sin2A = 2 SinA CosA
  • Cos2A = Cos2 A - Sin2 A = 2 Cos2 A - 1 = 1 - 2 Sin2 A
  • Tan2A = 2 Tan A / (1 - Tan2 A)
  • Sin2 A = (1 - Cos2A)/2
  • Cos2 A = (1 + Cos2A)/2
  • Sin2A = 2TanA/ (1+Tan2A)
  • Cos2A = (1-Tan2A)/ (1 + Tan2A)
  • Tan2A = 2TanA/ (1-Tan2A)
  • Sin A = 2 SinA/2 CosA/2 = 2TanA/2 / (1+Tan2A/2)
  • Cos A = Cos2 A/2 - Sin2 A/2 = 2 Cos2 A/2 - 1 = 1 - 2 Sin2 A/2 = (1-Tan2A/2)/ (1 + Tan2A/2)
  • TanA = 2TanA/2 / (1-Tan2A/2)
  • Sin 3A = 3 Sin A - 4 Sin3A
  • Cos 3A = 4 Cos3A- 3 Cos A
  • Tan 3A = (3Tan A – tan3A) / (1-3Tan2A)
  • Cos2A/2 = 1 + Cos A/2
  • Sin2A/2 = 1 - Cos A/2
  • Cos3A = (3Cos A + Cos 3A)/4
  • Sin3A = (3Sin A + Sin 3A)/4
  • Sin 18 = (√5 – 1)/ 4
  • Cos 36 = (√5 + 1)/ 4
  • Sin(A+B) Sin(A-B) = Sin2 A - Sin2 B
  • Cos(A+B) Cos(A-B) = Cos2 A - Sin2 B
  • 2 Sin A Cos B = Sin(A+B) + Sin(A-B)
  • 2 Cos A Sin B = Sin(A+B) - Sin(A-B)
  • 2 Cos A Cos B = Cos(A+B) + Cos(A-B)
  • 2 Sin A Sin B = Cos(A-B) - Cos(A+B)
  • Sin C - Sin D = 2 Sin( (C - D)/2 ) Cos( (C + D)/2 )
  • Cos C - Cos D = -2 Sin( (C - D)/2 ) Sin( (C + D)/2 )
  • Sin C + Sin D = 2 Sin( (C + D)/2 ) Cos( (C - D)/2 )
  • Cos C + Cos D = 2 Cos( (C - D)/2 ) Cos( (C + D)/2 )
   

Hyperbolic Definitions

sinh(x) = ( e x - e -x )/2

cosech(x) = 1/sinh(x) = 2/( e x - e -x )

cosh(x) = ( e x + e -x )/2

sech(x) = 1/cosh(x) = 2/( e x + e -x )

tanh(x) = sinh(x)/cosh(x) = ( e x - e -x )/( e x + e -x )

coth(x) = 1/tanh(x) = ( e x + e -x)/( e x - e -x )

cosh 2(x) - sinh 2(x) = 1

tanh 2(x) + sech 2(x) = 1

coth 2(x) - cosech 2(x) = 1


Inverse Hyperbolic Definitions

Sinh-1(z) = log( z + (z2 + 1) )
Cosh-1(z) = log( z + (z2 - 1) )

Tanh-1(z) = 1/2 log( (1+z)/(1-z) )

 


Relations to Trigonometric Functions

sinh(z) = -i sin(iz)

cosech(z) = i cosec(iz)

cosh(z) = cos(iz)

sech(z) = sec(iz)

tanh(z) = -i tan(iz)

coth(z) = i cot(iz)

sin(-x) = -sin(x)

cosec(-x) = -cosec(x)

cos(-x) = cos(x)

sec(-x) = sec(x)

tan(-x) = -tan(x)

cot(-x) = -cot(x)

 



Chennai Tuition

Accusam nonumy clita sed rebum kasd eirmod elitr. Ipsum ea lorem at et diam est, tempor rebum ipsum sit ea tempor stet et consetetur dolores. Justo stet diam ipsum lorem vero clita diam

Newsletter

Get In Touch

24/51 Lathuram Street, Chennai-600002

+91 99414 55373

chennaituition@gmail.com

Copyright © Chennai Tuition. All Rights Reserved.

Designed by HTML Codex